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Stopping Brownian Motion without Anticipation
as Close as Possible to its Ultimate Maximum

S. E. GRAVERSEN
�, G. PESKIR

�, A. N. SHIRYAEV
�

Let B = (Bt)0�t�1 be standard Brownian motion started at zero, and let St =
max 0�r�tBr for 0 � t � 1 . Consider the optimal stopping problem

V� = inf
�

E
�
B��S1)

2

where the infimum is taken over all stopping times of B satisfying 0 � � � 1 .

We show that the infimum is attained at the stopping time

�� = inf
�
0� t� 1 j St�Bt � z�

p
1�t

	
where z� = 1:12 . . . is the unique root of the equation

4�(z�) � 2z�'(z�) � 3 = 0

with '(x) = (1=
p
2�)e�x

2=2 and �(x) =
R x

�1 '(y) dy . The value V� equals

2�(z�)� 1 . The method of proof relies upon a stochastic integral representation of

S1 , time-change arguments, and the solution of a free-boundary (Stefan) problem.

1. Formulation of the problem

Imagine the real-line movement of a Brownian particle started at 0 during the time interval

[0; 1] . Let S1 denote the maximal positive height that the particle ever reaches during this time

interval. As S1 is a random quantity whose values depend on the entire Brownian path over the

time interval, its ultimate value is at any given time t2 [0; 1) unknown. Following the Brownian

particle from the initial time 0 onward, the question arises naturally as to determine a time when

the movement should be terminated so that the position of the particle at that time is as ’close’ as

possible to the ultimate maximum S1 . In this paper we present the solution to this problem if

’closeness’ is measured by a mean-square distance.

To formulate the problem more precisely, let B = (Bt)0�t�1 be a standard Brownian motion

(B0=0; E(Bt)=0; E(B2
t )= t) defined on a probability space (
;F ; P ) , and let IFB=(FB

t )0�t�1
denote the natural filtration generated by B . Letting M denote the family of all stopping (Markov)

times � with respect to IFB satisfying 0� � � 1 , the problem is to compute

(1.1) V� = inf
�2M

E

�
B� � max

0�t�1Bt

�2
and to find an optimal stopping time (the one at which the infimum in (1.1) is attained).
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The solution of this problem is presented in Theorem 2.1 below. It turns out that the maximum

process S = (St)0�t�1 given by

(1.2) St = sup
0�s�t

Bs

and the CUSUM-type reflected process S�B = (St�Bt)0�t�1 plays a key role in the solution.

The optimal stopping problem (1.1) is of interest, for example, in financial mathematics and

financial engineering where an optimal decision (i.e. optimal stopping time) should be based on a

prediction of the future behaviour of the observable process (asset price, index, etc.). The argument

also carries over to many other applied problems where such predictions play a role.

2. The result and proof

The main result of the paper is contained in the next theorem. Below we let

(2.1) '(x) =
1p
2�

e�x
2=2 and �(x) =

Z x

�1
'(y) dy (x2 IR)

denote the density and distribution function of a standard normal variable.

Theorem 2.1

Consider the optimal stopping problem (1.1) where (Bt)0�t�1 is a standard Brownian motion.

Then the value V� is given by the formula

(2.2) V� = 2�(z�) � 1 = 0:73 . . .

where z� = 1:12 . . . is the unique root of the equation

(2.3) 4�(z�) � 2z�'(z�) � 3 = 0

and the following stopping time is optimal (see Figures 2-5):

(2.4) �� = inf
�
0� t� 1 j St�Bt � z�

p
1�t 	

where St is given by (1.2) above.

Proof. Since S1 = sup 0�s�1Bs is a square-integrable functional of the Brownian path on

[0; 1] , by the Itô-Clark representation theorem (see e.g. [2] p.191) there exists a unique IFB-adapted

process H = (Ht)0�t�1 satisfying E(
R 1
0 H

2
t dt) < 1 such that

(2.5) S1 = a +

Z 1

0
Ht dBt

where a = E(S1) . Moreover, the following explicit formula is known to be valid:

(2.6) Ht = 2

�
1��

�St�Btp
1�t

��
for 0� t�1 (see e.g. [3] p.93 and [1] p.365, or Section 3 below for a direct argument).
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1. Associate with H the square-integrable martingale M = (Mt)0�t�1 given by

(2.7) Mt =

Z t

0
Hs dBs .

By the martingale property of M and the optional sampling theorem, we obtain

(2.8) E(B��S1)2 = EjB� j2 � 2E(B�M1) + EjS1j2

= E(�) � 2E(B�M� ) + 1 = E

�Z �

0

�
1�2Ht

�
dt

�
+ 1

for all � 2 M (recall that S1�jB1j). Inserting (2.6) into (2.8) we see that (1.1) can be rewritten as

(2.9) V� = inf
�2M

E

 Z �

0
F

�
St�Btp
1�t

�
dt

!
+ 1

where we denote F (x) = 4�(x)�3 .

Since S�B = (St�Bt)0�t�1 is a Markov process for which the natural filtration IFS�B
coincides with the natural filtration IFB , it follows from general theory of optimal stopping (see

[4]) that in (2.9) we need only consider stopping times which are hitting times for S�B . Recalling

moreover that S�B � jBj by Lévy’s distributional theorem (see e.g. [2] p.230) and once more

appealing to general theory, we see that (2.9) is equivalent to the optimal stopping problem

(2.10) V� = inf
�2M

E

 Z �

0
F

� jBtjp
1�t

�
dt

!
+ 1 .

In our treatment of this problem, we first make use of a deterministic change of time.

2. Motivated by the form of (2.10), consider the process Z=(Zt)t�0 given by

(2.11) Zt = et B1�e�2t .

By Itô’s formula we find that Z is a (strong) solution of the linear stochastic differential equation

(2.12) dZt = Zt dt +
p
2 d�t

where the process � = (�t)0�t�1 is given by

(2.13) �t =
1p
2

Z t

0
es dB1�e�2s =

1p
2

Z 1�e�2t

0

1p
1�s dBs .

As � is a continuous Gaussian martingale with mean zero and variance equal to t , it follows by

Lévy’s characterisation theorem (see e.g. [2] p.142) that � is a standard Brownian motion. We

thus may conclude that Z is a diffusion process with the infinitesimal generator given by

(2.14) ILZ = z
d

dz
+

d2

dz2
.

Substituting t = 1�e�2s in (2.10) and using (2.11), we obtain
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(2.15) V� = 2 inf
�2M

E

 Z ��

0
e�2sF

�jZsj� ds
!

+ 1

upon setting �� = log(1=
p
1��) . It is clear from (2.11) that � is a stopping time with respect

to IFB if and only if �� is a stopping time with respect to IFZ . This shows that our initial

problem (1.1) reduces to solve

(2.16) W� = inf
�

E

 Z �

0
e�2sF

�jZsj� ds
!

where the infimum is taken over all IFZ-stopping times � with values in [0;1] . This problem

belongs to the general theory of optimal stopping for time-homogeneous Markov processes (see [4]).

3. To calculate (2.16) define

(2.17) W�(z) = inf
�

Ez

 Z �

0
e�2sF

�jZsj� ds
!

for z 2 IR , where Z0 = z under Pz , and the infimum is taken as above. General theory

combined with basic properties of the map z 7! F (jzj) prompts that the stopping time

(2.18) �� = inf f t > 0 : jZtj � z� g

should be optimal in (2.17), where z� > 0 is a constant to be found.

To determine z� and compute the value function z 7! W�(z) in (2.17), it is a matter of

routine to formulate the following free-boundary (Stefan) problem:

(2.19)
�
ILZ�2

�
W (z) = �F (jzj) for z 2 (�z�; z�)

(2.20) W (�z�) = 0 (instantaneous stopping)

(2.21) W 0(�z�) = 0 (smooth fit)

where ILZ is given by (2.14) above. We shall extend the solution of (2.19)-(2.21) by setting its

value equal to 0 for z =2 (�z�; z�) , and thus the map so obtained will be C2 everywhere on

IR but at �z� and z� where it is C1 .

Inserting ILZ from (2.14) into (2.19) leads to the following equation:

(2.22) W 00(z) + zW 0(z) � 2W (z) = �F (jzj)

for z 2 (�z�; z�) . The form of the equation (2.12) and the value (2.16) indicates that z 7!W�(z)
should be even; thus we shall additionally impose

(2.23) W 0(0) = 0

and consider (2.22) only for z 2 [0; z�) .

The general solution of the equation (2.22) for z� 0 is given by

(2.24) W (z) = C1(1+z
2) + C2

�
z'(z) + (1+z2)�(z)

�
+ 2�(z) � 3=2 .
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The three conditions W (z�) = W 0(z�) = W 0(0) = 0 determine constants C1 ; C2 and z�
uniquely; it is easily verified that C1 = �(z�) ; C2 = �1 , and z� is the unique root of the

equation (2.3). Inserting this back into (2.22), we obtain the following candidate for the value (2.17):

(2.25) W (z) = �(z�)(1+z2) � z'(z) + (1�z2)�(z) � 3=2

when z 2 [0; z�] , upon extending it to an even function on IR as indicated above (see Figure 1).

To verify that this solution z 7! W (z) coincides with the value function (2.17), and that ��
from (2.18) is an optimal stopping time, we shall note that z 7! W (z) is C2 everywhere but at

�z� where it is C1 . Thus by the Itô-Tanaka formula we find:

(2.26) e�2tW (Zt) =W (Z0) +

Z t

0
e�2s

�
ILZW (Zs)� 2W (Zs)

�
ds+

p
2

Z t

0
e�2sW 0(Zs) d�s .

Hence by (2.22) and the fact that ILZW (z) � 2W (z) = 0 > �F (jzj) for z =2 [�z�; z�] , upon

extending W 00 to �z� as we please and using that the Lebesgue measure of those t > 0 for

which Zt = �z� is zero, we get:

(2.27) e�2tW (Zt) � W (Z0) �
Z t

0
e�2sF (jZsj) ds +Mt

where M = (Mt)t�0 is a continuous local martingale given by Mt =
p
2
R t
0 e

�2sW 0(Zs) d�s .

Using further that W (z)�0 for all z , a simple application of the optional sampling theorem in

the stopped version of (2.27) under Pz shows that W�(z)�W (z) for all z . To prove equality

one may note that the passage from (2.26) to (2.27) also yields:

(2.28) 0 = W (Z0) �
Z ��

0
e�2sF (jZsj) ds + M��

upon using (2.19) and (2.20). Since clearly Ez(��)<1 and thus Ez(
p
��)<1 as well, and

z 7! W 0(z) is bounded on [�z�; z�] , we can again apply the optional sampling theorem and

conclude that Ez(M��) = 0 . Taking the expectation under Pz on both sides in (2.28) enables

one therefore to conclude W�(z)=W (z) for all z , and the proof of the claim is complete.

From (2.15)-(2.17) and (2.25) we find that V� = 2W�(0)+1 = 2(�(z�)�1)+1 = 2�(z�)�1 .

This establishes (2.2). Transforming �� from (2.18) back to the initial problem via the equivalence

of (2.9), (2.10) and (2.15), we see that �� from (2.4) is optimal. The proof is complete.

Remarks:

1. Recalling that S�B� jBj we see that �� is identically distributed as the stopping timee� = inf f t > 0 : jBtj = z�
p
1�t g . This implies E(��) = E(e�) = EjBe� j2 = (z�)2E(1�e� ) =

(z�)2(1�E(��)) , and hence we obtain

(2.29) E(��) =
(z�)2

1 + (z�)2
= 0:55 . . .

Moreover, using that (B4
t �6tB2

t +3t2)t�0 is a martingale, similar arguments show that
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(2.30) E(��)2 =
(z�)6+5(z�)4

(1+(z�)2)(3+6(z�)2+(z�)4)
= 0:36 . . .

From (2.29) and (2.30) we find

(2.31) Var(��) =
2(z�)4

(1+(z�)2)2(3+6(z�)2+(z�)4)
= 0:05 . . .

2. For the sake of comparison with (2.2) and (2.29) it is interesting to note that

(2.32) V0 = inf
0�t�1

E

��
Bt � max

0�s�1
Bs

�2�
=

1

�
+

1

2
= 0:81 . . .

with the infimum being attained at t=1=2 . For this, recall from (2.8) and (2.6) that

(2.33) E(Bt�S1)
2 = E

 Z t

0
F

�
Ss�Bsp

1�s
�
ds

!
+ 1

where F (x) = 4�(x)�3 . Using further that S�B�jBj , elementary calculations show

(2.34) E(Bt�S1)
2 = 4

 Z t

0
E

�
�

� jBsjp
1�s

��
ds

!
�3t+1

= 4

Z t

0

�
1 � 1

�
arctan

r
1�s
s

�
ds�3t+1

= � 4

�

 
t arctan

r
1�t
t

+
1

2
arctan

r
t

1�t �
1

2

p
t (1�t)

!
+t+1 .

Hence (2.32) is easily verified by standard means.

3. In view of the fact that �� from (2.18) with z� = 1:12 . . . from (2.3) is optimal in the

problem (2.17), it is interesting to observe that the unique solution of the equation F (ẑ) = 0 is

given by ẑ = 0:67 . . . Noting moreover that the map z 7! F (z) is increasing on [0;1) and

satisfies F (0) = �1 , we see that F (z)<0 for all z 2 [0; ẑ) and F (z)>0 for all z>ẑ . The

size of the gap between ẑ and z� quantifies the tendency of the process jZj to return back to

the ’favourable’ region [0; ẑ) where clearly it is never optimal to stop.

4. The case of a general time interval [0; T ] easily reduces to the case of a unit time interval

treated above by using the scaling property of Brownian motion implying

(2.35) inf
0���T

E

��
B� � max

0�t�T
Bt

�2�
= T inf

0���1E
��

B� � max
0�t�1

Bt

�2�
which further equals to T (2�(z�)�1) by (2.2). Moreover, the same argument shows that the

optimal stopping time in (2.35) is given by

(2.36) �� = inf
�
0� t� T j St�Bt � z�

p
T�t 	

where z� is the same as in Theorem 2.1.

5. The maximum functional in the argument above can be replaced by other functionals. The
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integral functional is an example which turns out to have a trivial solution.

Setting I1 =
R 1
0 Bt dt we find by Itô’s formula that the following analogue of (2.5) is valid:

(2.37) I1 =

Z 1

0
(1� t) dBt .

Denoting Mt =
R t
0 (1�s) dBs it follows as in (2.8) that

(2.38) E(B��I1)2 = EjB� j2 � 2E(B�M1) + EjI1j2 = E(�2��) + 1=3

for all � 2 M . Hence we see that (cf. (2.40) below):

(2.39) inf
�2M

E(B��I1)2 = 1=12 = 0:08 . . .

and that the infimum is attained at �� � 1=2 .

6. From the point of view of mathematical statistics, the "estimator" B� of S1 is biased,

since E(B� ) = 0 for all 0���1 but E(S1) 6= 0 . It is thus desirable to consider the values

(2.40) eV� = inf
a2IR ; �2M

E
�
a+B��S1

�2
and eV0 = inf

a2IR ; 0�t�1
E
�
a+Bt�S1

�2
and compare them with the values from (1.1) and (2.32). However, by using that E(B� ) = 0
we also find at once that a� = E(S1) is optimal in (2.40) with eV� = V��2=� = 0:09 . . . andeV0 = V0�2=� = 0:18 . . .

3. Stochastic integral representation of the maximum process

In this section we present a direct derivation of the stochastic integral representation (2.5) and

(2.6) (cf. [3] p.89-93 and [1] p.363-369). For the sake of comparison we shall deal with a standard

Brownian motion with drift given by

(3.1) B�
t = Bt + �t

where � is a real number. The maximum process S� associated with B� is given by

(3.2) S�
t = sup

0�s�t
B�
s .

1. To derive the analogue of (2.5) and (2.6) in this case, we shall first note that stationary

independent increments of B� imply

(3.3) E
�
S�
1 j FB

t

�
= S�

t + E

��
sup
t�s�1

B�
s � S�

t

�+��� FB
t

�
= S�

t + E

��
sup
t�s�1

(B�
s �B�

t )� (S�
t �B�

t )

�+��� FB
t

�
= S�

t + E

�
S�
1�t � (z�x)

�+����
z=S�

t ; x=B
�
t

.
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Using further the formula E(X�c)+ =
R1
c PfX>zg dz , we see that (3.3) reads as

(3.4) E
�
S�
1 j FB

t

�
= S�

t +

Z 1

S�
t �B�

t

�
1�F �

1�t(z)
�
dz := f(t; B�

t ; S
�
t )

where we use the following notation:

(3.5) F �
1�t(z) = P

�
S�
1�t � z

	
and the map f = f(t; x; s) is defined accordingly.

2. Applying Itô’s formula to the right-hand side of (3.4), and using that the left-hand side

defines a continuous martingale, we find upon setting a� = E(S�
1 ) that

(3.6) E
�
S�
1 j FB

t

�
= a� +

Z t

0

@f

@x
(s; B�

s ; S
�
s ) dBs

= a� +

Z t

0

�
1�F �

1�s(S
�
s �B�

s )
�
dBs

as a non-trivial continuous martingale cannot have paths of bounded variation. This reduces the

initial problem to the problem of calculating (3.5).

3. The following explicit formula is well-known (see e.g. [1] p.368 or [5] p.759-760):

(3.7) F �
1�t(z) = �

�
z � �(1�t)p

1�t
�
� e2�z�

��z � �(1�t)p
1�t

�
.

Inserting this into (3.6) we obtain the representation

(3.8) S�
1 = a� +

Z 1

0
H�
t dBt

where the process H� is explicitly given by

(3.9) H�
t = 1� �

�
(S�t �B�

t )� �(1�t)p
1�t

�
+ e2�(S

�
t�B�

t ) �

��(S�t �B�
t )� �(1�t)p
1�t

�
.

Setting � = 0 in this expression, we recover (2.5) and (2.6).

4. Note that the argument above extends to a large class of processes with stationary independent

increments (including Lévy processes) by reducing the initial problem to calculating the analogue

of (3.5). In particular, the following "prediction" result deserves a special note. It is derived in

exactly the same way as (3.4) above.

Let X = (Xt)0�t�T be a process with stationary independent increments started at zero, and

let us denote St = max0�s�tXs for 0 � t � T . If E(ST ) <1 then the predictor E(ST jFX
t )

of ST based on the observations fXs j 0� s� t g is given by the following formula:

(3.10) E
�
ST j FX

t

�
= St +

Z 1
St�Xt

�
1�FT�t(z)

�
dz

where FT�t(z) = PfST�t � zg .

8



REFERENCES

[1] KARATZAS, I. and SHREVE, S. (1998). Methods of Mathematical Finance. Springer-Verlag.

[2] REVUZ, D. and YOR, M. (1994). Continuous Martingales and Brownian Motion. (Second

Edition) Springer-Verlag.

[3] ROGERS, L. C. G. and WILLIAMS, D. (1987). Diffusions, Markov Processes, and Martin-
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�z� z�

z

z 7! W�(z)

Figure 1. A computer drawing of the map (2.17). The smooth fit (2.21) holds at �z� and z� .

1

2

�
t

Figure 2. A computer simulation of a Brownian path (Bt(!))0�t�1 with the maximum being

attained at � = 0:51 .
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1

2

�
t

Figure 3. A computer drawing of the maximum process (St(!))0�t�1 associated with the Brownian

path from Figure 2.

1

2

t

Figure 4. A computer drawing of the difference process (St(!)�Bt(!))0�t�1 from Figures 2-3.
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1

1

z�

��
t

t 7! z�
p
1�t

Figure 5. A computer drawing of of the optimal stopping strategy (2.4) for the Brownian path from

Figures 2-4. It turns out that �� = 0:62 in this case (cf. Figure 2).
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